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Mathematical Modeling:                 
A Tale of Two Cultures



Plane makers are accustomed to 
testing metals and plastics under 
almost every conceivable kind of 
extreme stress, but it's impossible to run 
a big computer program through every 
scenario to detect the bugs that invariably    
crop up. 

In extreme cases, foul-ups can lead to sudden loss of control, sometimes not 
showing up until years after aircraft are introduced into service.  Malaysia 
Airlines Flight 124 is a case in point.  Boeing's 777 jets started service in 1995 
and had never experienced a similar emergency before. 

[Wall Street Journal; May 30, 2006]
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Bridge, Aircraft, etc.: 
Physics-based Models 

Theories of estimation.       
Theories of sensitivity.

Artifacts are physical objects; 
we want to make them 
predictable and robust.

Software:                    
Systems-based Models

Theories of correctness.

Fallacy:
systems are non-physical, 
pseudo-mathematical objects; 
we want to prove properties. 

What’s wrong with our models?
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Most of Computer Science has systematically removed real time and 
resource consumption from its programming abstractions.

Most of Electrical Engineering pretends there is no choice between   
(i) automatically synthesizing code from high-level, resource-aware 
models and (ii) low-level (assembly) coding.      

All three approaches (high-level programming, code synthesis,  
low-level coding) lead to “build & test & tweak”:

Software is the most costly, least flexible, and most error-prone part 
of an embedded system.  

Current State of Affairs
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1. Let’s restrict ourselves to deterministic designs.

2. Let’s restrict ourselves to continuous designs.

Complexity Control

Traditional Answer:

We need to divide-and-conquer: components, contracts, interfaces, 
modularity, assume-guarantee, separation of concerns, etc.

It has not yet been demonstrated that these approaches simplify the 
problem; in fact, they often make it more complicated [Lamport].

Let’s try something simpler first:



Where have all the smart guys gone?



Software truly is the most complex artifacts mankind builds. 
It’s not surprising we rarely get it right.

Where have all the smart guys gone?

Between 1069 and 1081

atoms in the universe.

10 MB cache > 1020,000,000 states.
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Challenge 1:                          
Build Predictable Systems

Predictable = Deterministic

A system is deterministic if                                                 
for every input behavior, the output behavior is unique.

-internal (invisible) behavior need not be unique 

-visible behavior includes all aspects of interest:              
for real-time systems, behavior includes time stamps  



Nondeterminism

Central to complexity theory:  P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that 
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency:  a||b = ab + ba
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Nondeterminism

Central to complexity theory:  P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that 
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency:  a||b = ab + ba

Alternatives to threads:                                        
actors; transactions

invisible

invisible

invisible

deterministic

visible

less nondeterministic



Nondeterminism

1. Input nondeterminism:  OK
for every observable input behavior, 
unique observable output behavior

2. Unobservable implementation nondeterminism:  OK
deterministic abstraction layer over nondeterministic components

3. Don’t care nondeterminism:  OK

use don’t care (or probability distribution) as output observation

4. Observable implementation nondeterminism:  AVOID

e.g. multi-threaded systems, scheduled systems
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What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

Real-time software: input and output values and times

D(0, t) (1, t+0.5) ND(0,t) (1, t+0.5) or (1, t+1)

0 ⊥

(0,t) (1, [t+0.5, t+1])



What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

Reliable software: output probabilities

D0 Pr(0) = 0.1   
Pr(1) = 0.9 ND0

0 ⊥

Pr(0) = 0.1   
Pr(1) = 0.9

or

Pr(0) = 0.2    
Pr(1) = 0.8



Giotto Project: Deterministic Real Time
Can we build a real-time programming language that treats 
time in the way in which high-level languages treat memory?

-programmer specifies the time of outputs

-programmer assumes the platform offers sufficient 
performance

-compiler generates a suitable schedule or throws an exception   



LET (Logical Execution Time) Programming Model

Software Task

read sensor 
input at time t

write actuator 
output at time t+d, 
for specified d



time t time t+d

physical execution 
on CPU buffer output

Compiler reconciles Logical and Physical Execution Times



Timing predictability:     minimal jitter                       
Value predictability:       no data races                       

Time and Value Determinism



make output available 
as soon as ready

Contrast LET with Scheduled Programming Model



data race

Task output values depend 
on which task finishes first!

Contrast LET with Scheduled Programming Model



HTL Project: Deterministic Reliability
Can we build a programming language that treats reliability
in the way in which high-level languages treat memory?

-programmer specifies the long-run failure rate of outputs

-programmer assumes the platform offers sufficient reliability

-compiler generates a task replication mapping or rejects the 
program  
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write actuator y every 4 ms 
with failure rate · 0.001;

LOGICAL RELIABILITY
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Program:
write actuator y every 4 ms 
with failure rate · 0.001;

LOGICAL RELIABILITY

Platform:
CPU reliability 0.97;             
sensor reliability 0.95;

PHYSICAL RELIABILITY

Compiler replicates computation of actuator value on 2 CPUs:  
(1 – 0.97)2 · 0.001
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Challenge 2:                          
Build Robust Systems

Robust = Continuous

A system is continuous if for all real-valued quantities,                       
small input changes cannot cause large output changes.

-∀ ε>0. ∃ δ>0. input-change · δ ⇒ output-change · ε

-can apply only to real-valued quantities: sensor readings 
and actuator settings; time stamps; probabilities



In general programs are not continuous.                         
But they can be more continuous:

read sensor value x at time t;
compute “continuous” function y = f(x);
write output value y at time t+d;

Or less continuous: Better:
read sensor value x;                                        
if x · c then y = f1(x) if x · c - ε then y = f1(x);

else y = f2(x); if x ≥ c + ε then y = f2(x)
else y = (f1(x) + f2(x))/2;
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In general programs are not continuous.                         
But they can be more continuous:

read sensor value x at time t;
compute “continuous” function y = f(x);
write output value y at time t+d;

Or less continuous: Better:
read sensor value x;                                        
if x · c then y = f1(x) if x · c - ε then y = f1(x);

else y = f2(x); if x ≥ c + ε then y = f2(x)
else y = (f1(x) + f2(x))/2;

We need system preference metrics in 
addition to boolean correctness criteria.
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What is an Observation?

Traditional software: 

Cx ∈ R f(x) ∈ R

NC0  
1

1  
0  

Sensor software: 

Real-time software: 

C(x, t) (f(x), g(x.t))
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Real time: 

C e.g. Skorohod
metric on signals



Topology on Observations

Real time: 

C e.g. Skorohod
metric on signals

Reliability: 

Csensor value 
validity 0.99

actuator value 
validity 0.95



Conclusion

Topology of observations T should be an essential 
part of every system specification:

1. Determinism of a model depends on T.

2. Continuity of a model depends on T.

Different choices of T will lead to different designs.



Conclusion

Topology of observations T should be an essential 
part of every system specification:

1. Determinism of a model depends on T.

2. Continuity of a model depends on T.

Different choices of T will lead to different designs.

The choice of modeling language should depend on 
the choice of T.  

Research Challenge: For given T, we need 
languages that guarantee determinism and continuity.


