
Tom Henzinger
EPFL

Based on joint work with Alberto Sangiovanni-Vincentelli.

Predictability and Robustness
in

Embedded Systems

Artifact

Model

Calculate

Build & test

Abstract Predict

Mathematics

Bridge
Aircraft
Software
etc.

Complexity Management in Engineering

Bridge, Aircraft, etc.:
Physics-based Models

Differential Equations
Linear Algebra
Probability Theory

Software:
Systems-based Models

Logics
Discrete Structures
Automata Theory

Mathematical Modeling:
A Tale of Two Cultures

Plane makers are accustomed to
testing metals and plastics under
almost every conceivable kind of
extreme stress, but it's impossible to run
a big computer program through every
scenario to detect the bugs that invariably
crop up.

In extreme cases, foul-ups can lead to sudden loss of control, sometimes not
showing up until years after aircraft are introduced into service. Malaysia
Airlines Flight 124 is a case in point. Boeing's 777 jets started service in 1995
and had never experienced a similar emergency before.

[Wall Street Journal; May 30, 2006]

Bridge, Aircraft, etc.:
Physics-based Models

Theories of estimation.
Theories of sensitivity.

Software:
Systems-based Models

Theories of correctness.

What’s wrong with our models?

Bridge, Aircraft, etc.:
Physics-based Models

Theories of estimation.
Theories of sensitivity.

Artifacts are physical objects;
we want to make them
predictable and robust.

Software:
Systems-based Models

Theories of correctness.

Fallacy:
systems are non-physical,
pseudo-mathematical objects;
we want to prove properties.

What’s wrong with our models?

Most of Computer Science has systematically removed real time and
resource consumption from its programming abstractions.

Current State of Affairs

Most of Computer Science has systematically removed real time and
resource consumption from its programming abstractions.

Most of Electrical Engineering pretends there is no choice between
(i) automatically synthesizing code from high-level, resource-aware
models and (ii) low-level (assembly) coding.

Current State of Affairs

Most of Computer Science has systematically removed real time and
resource consumption from its programming abstractions.

Most of Electrical Engineering pretends there is no choice between
(i) automatically synthesizing code from high-level, resource-aware
models and (ii) low-level (assembly) coding.

All three approaches (high-level programming, code synthesis,
low-level coding) lead to “build & test & tweak”:

Software is the most costly, least flexible, and most error-prone part
of an embedded system.

Current State of Affairs

Complexity Control

Traditional Answer:

We need to divide-and-conquer: components, contracts, interfaces,
modularity, assume-guarantee, separation of concerns, etc.

Complexity Control

Traditional Answer:

We need to divide-and-conquer: components, contracts, interfaces,
modularity, assume-guarantee, separation of concerns, etc.

It has not yet been demonstrated that these approaches simplify the
problem; in fact, they often make it more complicated [Lamport].

1. Let’s restrict ourselves to deterministic designs.

2. Let’s restrict ourselves to continuous designs.

Complexity Control

Traditional Answer:

We need to divide-and-conquer: components, contracts, interfaces,
modularity, assume-guarantee, separation of concerns, etc.

It has not yet been demonstrated that these approaches simplify the
problem; in fact, they often make it more complicated [Lamport].

Let’s try something simpler first:

Where have all the smart guys gone?

Software truly is the most complex artifacts mankind builds.
It’s not surprising we rarely get it right.

Where have all the smart guys gone?

Between 1069 and 1081

atoms in the universe.

10 MB cache > 1020,000,000 states.

Challenge 1:
Build Predictable Systems

Challenge 1:
Build Predictable Systems

Predictable = Deterministic

A system is deterministic if
for every input behavior, the output behavior is unique.

Challenge 1:
Build Predictable Systems

Predictable = Deterministic

A system is deterministic if
for every input behavior, the output behavior is unique.

-internal (invisible) behavior need not be unique

-visible behavior includes all aspects of interest:
for real-time systems, behavior includes time stamps

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

invisible

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

invisible

invisible

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

invisible

invisible

invisible

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

invisible

invisible

invisible

deterministic

Output domain = {0,1.⊥}

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

invisible

invisible

invisible

deterministic

visible
a: x := x+1
b: x := 2x

Nondeterminism

Central to complexity theory: P v. NP

Central to abstraction:

-high-level programming languages: e.g. memory management

-algorithm design: as long as there exists an 0·i<n such that
a[i]>a[i+1], swap a[i] and a[i+1]

-don’t cares: if input=0, then output=⊥

Central to concurrency: a||b = ab + ba

Alternatives to threads:
actors; transactions

invisible

invisible

invisible

deterministic

visible

less nondeterministic

Nondeterminism

1. Input nondeterminism: OK
for every observable input behavior,
unique observable output behavior

2. Unobservable implementation nondeterminism: OK
deterministic abstraction layer over nondeterministic components

3. Don’t care nondeterminism: OK

use don’t care (or probability distribution) as output observation

4. Observable implementation nondeterminism: AVOID

e.g. multi-threaded systems, scheduled systems

What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

0 ⊥

What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

Real-time software: input and output values and times

D(0, t) (1, t+0.5) ND(0,t) (1, t+0.5) or (1, t+1)

0 ⊥

What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

Real-time software: input and output values and times

D(0, t) (1, t+0.5) ND(0,t) (1, t+0.5) or (1, t+1)

0 ⊥

(0,t) (1, [t+0.5, t+1])

What is an Observation?

Traditional software: input and output values

D0 1 ND0 0 or 1

Reliable software: output probabilities

D0 Pr(0) = 0.1
Pr(1) = 0.9 ND0

0 ⊥

Pr(0) = 0.1
Pr(1) = 0.9

or

Pr(0) = 0.2
Pr(1) = 0.8

Giotto Project: Deterministic Real Time
Can we build a real-time programming language that treats
time in the way in which high-level languages treat memory?

-programmer specifies the time of outputs

-programmer assumes the platform offers sufficient
performance

-compiler generates a suitable schedule or throws an exception

LET (Logical Execution Time) Programming Model

Software Task

read sensor
input at time t

write actuator
output at time t+d,
for specified d

time t time t+d

physical execution
on CPU buffer output

Compiler reconciles Logical and Physical Execution Times

Timing predictability: minimal jitter
Value predictability: no data races

Time and Value Determinism

make output available
as soon as ready

Contrast LET with Scheduled Programming Model

data race

Task output values depend
on which task finishes first!

Contrast LET with Scheduled Programming Model

HTL Project: Deterministic Reliability
Can we build a programming language that treats reliability
in the way in which high-level languages treat memory?

-programmer specifies the long-run failure rate of outputs

-programmer assumes the platform offers sufficient reliability

-compiler generates a task replication mapping or rejects the
program

Program:
write actuator y every 4 ms
with failure rate · 0.001;

LOGICAL RELIABILITY

Program:
write actuator y every 4 ms
with failure rate · 0.001;

LOGICAL RELIABILITY

Platform:
CPU reliability 0.97;
sensor reliability 0.95;

PHYSICAL RELIABILITY

Program:
write actuator y every 4 ms
with failure rate · 0.001;

LOGICAL RELIABILITY

Platform:
CPU reliability 0.97;
sensor reliability 0.95;

PHYSICAL RELIABILITY

Compiler replicates computation of actuator value on 2 CPUs:
(1 – 0.97)2 · 0.001

Challenge 2:
Build Robust Systems

Challenge 2:
Build Robust Systems

Robust = Continuous

A system is continuous if for all real-valued quantities,
small input changes cannot cause large output changes.

Challenge 2:
Build Robust Systems

Robust = Continuous

A system is continuous if for all real-valued quantities,
small input changes cannot cause large output changes.

-∀ ε>0. ∃ δ>0. input-change · δ ⇒ output-change · ε

-can apply only to real-valued quantities: sensor readings
and actuator settings; time stamps; probabilities

In general programs are not continuous.
But they can be more continuous:

read sensor value x at time t;
compute “continuous” function y = f(x);
write output value y at time t+d;

Or less continuous: Better:
read sensor value x;
if x · c then y = f1(x) if x · c - ε then y = f1(x);

else y = f2(x); if x ≥ c + ε then y = f2(x)
else y = (f1(x) + f2(x))/2;

In general programs are not continuous.
But they can be more continuous:

read sensor value x at time t;
compute “continuous” function y = f(x);
write output value y at time t+d;

Or less continuous: Better:
read sensor value x;
if x · c then y = f1(x) if x · c - ε then y = f1(x);

else y = f2(x); if x ≥ c + ε then y = f2(x)
else y = (f1(x) + f2(x))/2;

In general programs are not continuous.
But they can be more continuous:

read sensor value x at time t;
compute “continuous” function y = f(x);
write output value y at time t+d;

Or less continuous: Better:
read sensor value x;
if x · c then y = f1(x) if x · c - ε then y = f1(x);

else y = f2(x); if x ≥ c + ε then y = f2(x)
else y = (f1(x) + f2(x))/2;

We need system preference metrics in
addition to boolean correctness criteria.

What is an Observation?

Traditional software:

Cx ∈ R f(x) ∈ R

NC0
1

1
0

Sensor software:

What is an Observation?

Traditional software:

Cx ∈ R f(x) ∈ R

NC0
1

1
0

Sensor software:

Real-time software:

C(x, t) (f(x), g(x.t))

Topology on Observations

Real time:

C e.g. Skorohod
metric on signals

Topology on Observations

Real time:

C e.g. Skorohod
metric on signals

Reliability:

Csensor value
validity 0.99

actuator value
validity 0.95

Conclusion

Topology of observations T should be an essential
part of every system specification:

1. Determinism of a model depends on T.

2. Continuity of a model depends on T.

Different choices of T will lead to different designs.

Conclusion

Topology of observations T should be an essential
part of every system specification:

1. Determinism of a model depends on T.

2. Continuity of a model depends on T.

Different choices of T will lead to different designs.

The choice of modeling language should depend on
the choice of T.

Research Challenge: For given T, we need
languages that guarantee determinism and continuity.

